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Abstract

This project analyzes the effect of transverse shear deformation upon the aeroelastic response
of composite wings in high speed flow regimes. Previously, models have been developed to
predict the aeroelastic characteristics of classical materials in high speed flow. However,
these studies ignored transverse shear by assuming an infinite modulus of rigidity. This
assumption underestimates transverse flexibility by ignoring the transfer of loads through
the wing thickness. By assuming a finite modulus of rigidity and redeveloping the governing
equations, this model would more accurately predict the aeroelastic response of composite
wings. This present analysis concerns mainly the determination of aeroelastic trends vice
more detailed solutions. Thus, linearized flow theory is used. Upon conclusion, this study
gives results for divergence speed and flutter speeds, as well as their mode shapes.
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Chapter 1

Background

Since the days of the Wright Flyer, the aviation industry has constantly searched for lighter,

stronger, and more durable materials. In the past century this pursuit has taken aeronautical

engineers from cloth and wood to paper thin steel to honeycombed aluminum structures.

The next logical step in this evolution is composite materials. However, due to the differences

in the properties of composites and the so-called classical materials, designers need guidance

to predict the characteristics of composite aeroelastic structures.

The purpose of this project is to develop a model, which will predict the impact of using

composite materials in aircraft wings. In particular, it will look at the aeroelastic effects

caused by transverse shear deformation.

1.1 A Brief Overview of Aeroelasticity

Often, the complexities of design force engineers to break down their work into simpler

components. In aeronautical engineering, the two most vital of these components are the

aerodynamic and structural characteristics of the aircraft. These basic pieces of the puzzle

answer the questions: a) will the aircraft fly? and b) will it stay in one piece? In a perfect

undergraduate level world, answering these two questions would be enough. However, in

9
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the real world things are not as simple. In truth the aerodynamic and structural forces

on an aircraft are dependent upon each other. This being said, the next logical question

becomes, “How do the two affect each other?” In response to this, engineers began the study

of aeroelasticity.

Aeroelasticity can be defined as the study of the interaction between the aerodynamic,

inertial, and structural forces acting on an object.(1,3) Taking principles from the fields of

aerospace and mechanical engineering, the aeroelastician is primarily concerned with de-

termining the effects of placing an aerodynamic load on a structure. Although usually

associated with aircraft design, aeroelasticians are used in a variety of fields. For instance,

the most famous of all aeroelastic failures occurred on the Tacoma Narrows Bridge, which

can be seen in Fig. 1.1. In 1940, the aerodynamic load caused by wind blowing through the

Figure 1.1: Torsional oscillation of Tacoma Narrows Bridge.2
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valley caused this suspension bridge, constructed of concrete and steel, to twist, bend, and

eventually collapse, as if it were made of rubber. The failure of the Tacoma Narrows Bridge

can be attributed to what is known as flutter instability.(3,1.7) Although not all aeroelastic

events are as visually dramatic, they do occur, and ignoring them can potentially lead to

catastrophic results.

The study of aeroelasticity can be broken down into two major branches: static and

dynamic. The case of static aeroelasticity is concerned with systems in equilibrium. Once

an aerodynamic load is placed on an aircraft, its structures will deform, redistributing the

load. This can lead to one of two possibilities. The first is simply a new state of equilibrium

in which the aerodynamic and structural characteristics of the wing are slightly changed for

better or worse. The second, and less appealing, case is that the redistributed loads will

escalate until the wing fails. This is known as static divergence.

Dynamic aeroelasticity is concerned with time dependent instabilities. These can be

either transient or oscillatory depending upon the nature of the response. The most promi-

nent of these cases is flutter, which simply represents a harmonically oscillating wing and

constitutes the stability boundary between damped and undamped oscillations. Aeroelastic

methods can be used to predict whether the system will eventually stabilize or diverge, as

in the case of the Tacoma Narrows Bridge.3

1.2 Composites vs. Classical Materials

In recent years, a continual improvement in composite materials has given engineers a new

level of freedom in design. These new materials allow for lightweight, high performance

structures, which could not have been constructed from metals. Metals are known as the

“classical” materials. However, with this change from metallic to composite structures, the

classic structural models must be reexamined to determine if they can be accurately applied
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to these new-age materials.

The ability to tailor materials to increase their functionality truly lends itself to the

field of aircraft and spacecraft design. In the quest to go faster and fly higher, weight

and structural stability are vital components. Over the past two decades, the effects of

these materials on the aeroelastic behavior of aircraft wings have been examined. Although

composite technology is allowing for the creation of wing structures of enhanced efficiency,

the incorporation of the new technology is forcing aeroelasticians to look back upon the old

models.

In many cases, the classical models developed over the past sixty years need only to be

extended, as the composite materials’ behavior closely resembles that of the metals. However,

composites tend to differ greatly from metals in the case of transverse shear flexibility.

Shear effects are created from the transfer of loads through the thickness of a structure.

The greater the shear rigidity, the less a material will transversely deform under a given

load. Early on in the derivation of the classical model, the assumption of infinite rigidity in

transverse shear was made. This assumption, referred to as Kirchhoff’s hypothesis, can be

made and justified in metallic structures. Conversely, composite materials have been shown

to have a much lower modulus of transverse shear rigidity.(4, 10) In some cases the effects

of transverse shear deformation have been shown to affect the static aeroelastic response of

a composite wing by almost fifty percent.(5,790) This is obviously not negligible. Due to the

large impact of transverse shear upon composite materials, the classical model cannot be used

or even extended to accurately predict the aeroelastic characteristics of composite wings, but

rather a new model must be created taking into account a finite rigidity in transverse shear

deformation.



Chapter 2

Procedure

In order to accurately develop a mathematical model representative of an aircraft wing in

high-speed flow, a four-step process is required. First, the equations of motion must be

developed for the system. Second, the structural mechanics of the wing must be inserted

into these equations. Next, the aerodynamic loads must be included to create a system of

governing equations. Finally, this system must be solved to determine the critical aeroelastic

eigenvalues and mode shapes of the wing. In order to accomplish this last step, the differential

equation solver in MATHEMATICA was used.

2.1 Equations of Motion

The first step in analyzing any physical system is to choose a set of axes, which can accurately

represent that system. Fig. 2.1 illustrates the geometric model of a generic swept wing. The

wing geometry is described by a Cartesian coordinate system with x1 set as the effective

wing root, x2 set normal to x1 as the reference axis along the wingspan, and x3 describing

the normal direction to the wing surface. This three dimensional system will be used to

describe the wing displacement under static and dynamic loads resulting from airflow over

the wing. Λ is used to describe the angle of sweep with positive angles associated with swept

13
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Figure 2.1: Geometry of a generic wing.(5,788)

back wings and negative angles describing a forward sweep. This becomes significant as Ref.

[5] shows that even in low speed flow, the angle of sweep has a dramatic effect on transverse

shear. Due to the fact that span is much greater than chord and thickness in most common

wings, the three dimensional wing will be reduced to a one-dimensional system with only a

spanwise variation of properties.

Having defined the coordinate system to be used, the equations of motion can now be

developed. Assuming first-order transverse shear deformation, that is the displacement field

varying linearly through the thickness, the three-dimensional time dependent displacement

equations are given by:
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U1(x1, x2, x3; t) = u1(x1, x2; t) + x3ψ1(x1, x2; t) (2.1)

U2(x1, x2, x3; t) = u2(x1, x2; t) + x3ψ2(x1, x2; t) (2.2)

U3(x1, x2, x3; t) = u3(x1, x2; t) (2.3)

In Equations (2.1-2), the first terms on the right-hand side represent the displacement

components in the reference plane (x3 = 0), while the second terms represent the displace-

ment off the reference plane. ψ1 is twist about the x2 axis, and ψ2 is twist about the x1

axis. Equation (2.3) shows that the normal displacement of any point in the wing structure

is assumed to be the same as a point in the reference plane. Thus, there is a constant wing

thickness during deformation.

To further simplify the system, it is assumed that chordwise rigidity exists. Thus, u1 → 0,

u2 → u2(x2; t), and ψ1 → ψ1(x2; t), which is defined as θ(x2; t), twist about the pitching axis.

The next step is to rewrite this three-dimensional displacement field as a one-dimensional

system. This is a valid assumption as long as the wing’s span is much larger than its chord,

as it resembles a beamlike structure; thus, the larger the aspect ratio, the more accurate the

model. The rotation about the x1 axis, ψ2(x1, x2; t), is modeled as a linear function in x1. ψ̄2

is the rotation of the reference axis about x1, while ψ̃2 is the rotation of the wing elements

off the reference axis. This can be written as

ψ2(x1, x2; t) = ψ̄2(x2; t) + x1ψ̃2(x2; t) (2.4)

The normal displacement of the reference plane can be written as

u3(x1, x2; t) = h(x2; t)− (x1 − x0)θ(x2; t) (2.5)

where h(x2; t) is the vertical displacement due to plunging as measured at the elastic axis.
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Inserting Equations (2.4-5) into Equations (2.1-3) results in the one-dimensional dis-

placement components. These equations are now only a function of time and the spanwise

coordinate, and can be written as

U1 = x3θ (2.6)

U2 = u2 + x3(ψ̄2 + x1ψ̃2) (2.7)

U3 = h− (x1 − x0)θ (2.8)

2.2 Hamilton’s Principle

Although seemingly complex, the entire method used to find the wing modes is based on the

principle of conservation of energy. Basically, the kinetic energy generated by the unsteady

aerodynamic loads is transfered to the wing creating potential energy in the form of a strain.

The structural analysis then determines how the wing will react under these loads, either

deforming into a new state of equilibrium or failing. The equations of motion result from

the application of Hamilton’s variational principle. Minimizing the function

δJ = 0

δJ =
∫ t1

t0

{
−

∫
ϕ
σijδUijdϕ+

∫
ϕ
ρ(Hi − Üi)δUidϕ+

∫
Ωσ

σiδUidΩ
}
dt (2.9)

The first term on the right-hand side represents the strain energy present inside the

structure of the wing. σij corresponds to the internal stresses, and ϕ represents the volume

of the wing. The second term represents the body forces and kinetic energy of the system,

with ρ being the density of the structure. The final term denotes the energy resulting from

the surface stresses, σi. Ωσ is the wing’s surface area.
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Hamilton’s Principle is an application of variational calculus and states that a physical

system will go from one state to the next through the lowest possible change in energy. By

integrating over time and setting the change in energy of the system equal to zero, the state

of deformation at t1 can be determined. Because the variational, δU does not necessarily

have to equal zero, its coefficients do. Thus, from inserting the structural properties and

aerodynamic forces into Equation (2.9), the displacements at a given state can be found.

2.3 Structural Analysis

It is now necessary to insert the structural properties of the wing. However, due to the fact

that the displacements are still general components at this point, Equation (2.9) must be

rewritten in terms of strain in order to simplify the system. The following relations are used

to accomplish this.(7,147)

ε11 = U1,1 = 0 (2.10)

ε22 = U2,2 = u′2 + x3(ψ̄
′
2 + x1ψ̃

′
2) (2.11)

ε33 = U3,3 = 0 (2.12)

γ12 = U1,2 + U2,1 = x3(θ
′ + ψ̃2) (2.13)

γ13 = U1,3 + U3,1 = 0 (2.14)

γ23 = U2,3 + U3,2 = ψ̄2 + x1ψ̃2 + h′ + (x0θ)
′ − x1θ

′ (2.15)

Here the subscripts (i, j) indicate differentiation of the ith component with respect to the

jth variable. Of particular interest to this model is Equation (2.15). This is where transverse

shear deformation can be accounted for. Had γ23 = 0, Kirchoff’s Hypothesis would be

satisfied as γ13 also equals zero. Recall that Kirchoff’s hypothesis is the assumption made
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for classical materials in which transverse shear rigidity is infinite, causing transverse shear

strains to vanish.

After the strain relations are inserted, Equation (2.9) becomes seemingly more complex.

In order to more easily deal with it, the following relations are defined

T
(m,n)
ij (x2) =

∫
A
σijx

m
1 x

n
3 dA (2.16)

τ
(m,n)
ij (x2) =

∫
A
ρHix

m
1 x

n
3 dA (2.17)

I(m,n)(x2) =
∫

A
ρxm

1 x
n
3 dA (2.18)

Equations (2.16-8) represent the generalized stress couples, body forces, and mass respec-

tively. From these, the most general equations of motion can be derived. These are5

δu2 : I(0,0)ü2 + I(0,1) ¨̄ψ2 + I(1,1) ¨̃ψ2 − T
(0,0)′

22 − τ
(0,0)
2 = 0 (2.19)

δψ̄2 : I(0,1)ü2 + I(0,2) ¨̄ψ2 + I(1,2) ¨̃ψ2 − T
(0,1)′

22 + T
(0,0)
23 − τ

(0,1)
2 = 0 (2.20)

δψ̃2 : I(1,1)ü2 + I(1,2) ¨̄ψ2 + I(2,2) ¨̃ψ2 − T
(1,1)′

22 + T
(0,1)
12 + T

(1,0)
23 − τ

(1,1)
2 = 0 (2.21)

δh : I(0,0)ḧ− (I(1,0) − x0I
(0,0))θ̈ − T

(0,0)′

23 − L− τ
(0,0)
3 = 0 (2.22)

δθ : (I(0,2) + I(2,0) − 2x0I
(1,0) + x2

0I
(0,0))θ̈ − (I(1,0) − x0I

(0,0))ḧ− T
(0,1)′

12

+T
(1,0)′

23 − x0T
(0,0)′

23 − T − τ
(0,1)
1 + τ

(1,0)
3 − x0τ

(0,0)
3 = 0 (2.23)

The natural boundary conditions also result from Hamilton’s variational principle, and

are given by

Root conditions (x2 = 0):

u2 = ψ̄2 = ψ̃2 = h = θ = 0 (2.24)
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Tip conditions (x2 = l):

T
(0,0)
22 = T̄

(0,0)
22 (2.25)

T
(0,1)
22 = T̄

(0,1)
22 (2.26)

T
(1,1)
22 = T̄

(1,1)
22 (2.27)

T
(0,0)
23 = T̄

(0,0)
23 (2.28)

T
(0,1)
12 − T

(1,0)
23 = T̄

(0,1)
12 − T̄

(1,0)
23 (2.29)

The system, Equations (2.19-29), represents the most general one-dimensional system.

The only assumptions made up to this point have been chordwise rigidity and constant

thickness. Now, the assumption that the wing is composed of a single layer of composite is

made. This assumption eases the process of determining the stress resultants, and if deemed

necessary, future study can be undertaken on wings with more than one layer.

The next step is to begin to define the material properties of the system in order to

analyze a more specific wing. By now inserting the constitutive equations, the generalized

stress couples can be put in terms of the displacement components. The three-dimensional

constitutive equations are: (4,51)

σ11

σ22

σ12

 =

 Q̄11 Q̄12 Q̄16

Q̄21 Q̄22 Q̄26

Q̄61 Q̄62 Q̄66


 ε11
ε22
γ12

 (2.30)

(
σ13

σ23

)
=

(
c̄45 c̄45
c̄54 c̄55

) (
γ13

γ23

)
(2.31)

Introduction of the three-dimensional constitutive equations into the one-dimensional

stress tensors can be done through the following relations:

[Āij(x2), aij(x2), āij] =
∫

c
Aij[1, x1, x

2
1] dx1 (2.32)
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[B̄ij(x2), bij(x2), b̄ij] =
∫

c
Bij[1, x1, x

2
1] dx1 (2.33)

[D̄ij(x2), dij(x2), d̄ij] =
∫

c
Dij[1, x1, x

2
1] dx1 (2.34)

where

[Aij(x1, x2), Bij(x1, x2), Cij(x1, x2)] =
∫ t

0
Q̄ij[1, x3, x

2
3] dx3 (2.35)

Equations (2.30-1) represent any material containing monoclinic symmetry, i.e. sym-

metry with respect to the vertical coordinate. From these principles comes higher level

aeroelastic theory, such as structural tailoring. However, further refinement of the structural

model can be used as the current emphasis is being placed on general trends, not exact solu-

tions. With this in mind, further assumptions can be made. In order to reduce the equations

to a more manageable size, it is assumed that the structural properties are constant in the

spanwise direction and also that the reference axis is along the wing mid-chord. Now the

generalized stress resultants can be written as:

T
(0,0)
22 = Ā22u

′
2 (2.36)

T
(0,1)
22 = D̄22ψ̄

′
2 + D̄26θ

′
2 + D̄26ψ̃2 (2.37)

T
(0,0)
23 = Ā55ψ̄2 + Ā55h

′
2 + Ā55(x0θ)

′
2 (2.38)

T
(1,1)
22 = d̄22ψ̃

′
2 (2.39)

T
(0,1)
12 = D̄62ψ̄

′
2 + D̄66θ

′ + D̄66ψ̃2 (2.40)

T
(1,0)
2,3 = ā55ψ̃2 − ā55θ

′ (2.41)

The final step in developing the wing’s structural model is to replace the one-dimensional

stiffness quantities with the material properties. This can be done in terms of three proper-

ties: Young’s modulus, the modulus of rigidity, and Poisson’s ratio. Young’s modulus, E, is
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a measure of the ratio of stress-to-strain in a material and gives a comparison between the

stiffnesses of various materials. The modulus of rigidity, G relates shearing stress-to-shearing

strain in much the same manner. Poisson’s ratio, ν, relates the axial strain to the lateral

strain. As can be guessed, all three properties are related. However, since each measures a

slightly different property, it is necessary to include all three in the material analysis. This

being said, the one-dimensional stiffness quantities can now be written as(4,53)

Ā55 = tcG (2.42)

ā55 =
G

12
c3t (2.43)

D̄22 =
E

12(1− ν2)
ct3 (2.44)

d̄22 =
E

144(1− ν2)
c3t3 (2.45)

D̄26 = 0 (2.46)

D̄66 =
E

24(1 + ν)
ct3 (2.47)

where t is the wing thickness, and c is the chord length.

The last set of assumptions to be made concern the body forces and inertial terms.

Because the wing deformation is measured due to the aerodynamic loads and not the weight

of the wing, the body forces will be ignored. Doing this significantly reduces the complexity

of the governing equations and boundary conditions. Also, at this point the system can be

reduced to four governing equations and eight boundary conditions by substitution.

With all the structural pieces in place, the governing equations can now be written in

terms of the displacement components, the structural properties, and the aerodynamic forces.

The governing system of aeroelastic equations is given by(5,789)
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δψ̄2 : − E

12(1− ν2)
ct3ψ̄′′2 + tcGψ̄′2 + tcGh′ + x0tcGθ

′ = 0 (2.48)

δψ̃2 : − E

144(1− ν2)
c3t3ψ̃′′2 +

( E

24(1 + ν)
ct3− G

12
c3t

)
θ′+

( E

24(1 + ν)
ct3+

G

12
c3t

)
ψ̃2 = 0 (2.49)

δh : tcGψ̃′2 + tcGh′ + x0tcGθ
′′ + L = 0 (2.50)

δθ :
(

E
24(1+ν)

ct3 + G
12
c3t+ x2

0tcG
)
θ′′ +

(
E

24(1+ν)
ct3 − G

12
c3t

)
ψ̃′2

+x0tcGψ̄
′
2 + x0tcGh

′′ + T = 0 (2.51)

with the boundary conditions:

x2 = 0:

ψ̄2 = ψ̃2 = h = θ = 0 (2.52)

x2 = l:

ψ̄′2 = ψ̃′2 = 0 (2.53)

ψ̄2 + h′ + x0θ
′ = 0 (2.54)( E

24(1 + ν)
ct3 − G

12
c3t

)
ψ̃2 +

( E

24(1 + ν)
ct3 +

G

12
c3t

)
θ′ = 0 (2.55)

After a good deal of math and material science, the structural model for the wing is now

complete, but this is only the first half of the development. The next step in the process

is to blend the aerodynamics into this model. This blend of disciplines is what makes the

study of aeroelasticity difficult, and at the same time, interesting.
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2.4 Static Aerodynamic Forces

In order to complete the governing equations, the aerodynamic load and torque per unit span

must be inserted into the governing equations. Due to the fact that structural instability

is the amplification of small deformations in the wing, the aeroelastic response to large

deformations represents a post-stability analysis, which is unnecessary. This allows for the

use of linear aerodynamic theory. Although not exact, the linear equations for load and

torque provide enough accuracy for this study.

In aerodynamic theory there are two very different types of flow: steady and unsteady.

Steady flow can be assumed along constant flight paths through laminar fluids, and its

properties are independent of time.8 Obviously from the mathematical standpoint, this is

the more desirable type of flow. From these equations, the static aeroelastic equations can

be determined. Solving this system allows for calculation of the flow velocity at which the

static instability, known as wing divergence, will occur, as well as the wing mode shapes

obtained for sub-critical flow.

In the case of steady flow, lift per unit span can be obtained by

L(x2) = qnac(α0 + θ − h′tanΛ) (2.56)

Equation (2.56) shows that much of the lift is determined by known properties of the

system, such as dynamic pressure, lift curve slope, chord length, and angle of attack. How-

ever, notice that θ and h′ come into this equation. These terms represent the aeroelastic

interaction between the aerodynamics and the structural properties. The terms in parenthe-

sis together are known as the effective angle of attack. This term accounts for the angle of
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attack at the wing root as well as any bending and twisting, which may have occured along

the span.

For incompressible flow, the lift curve slope is only a function of the geometric properties

of the wing. In compressible flow, a also becomes a function of Mach number. By varying the

Mach number, and thus the lift curve slope, the effects of high speed flow can be evaluated.

Likewise, the torque per unit span can be found from:

T (x2) = qnace(α0 + θ − h′tanΛ) + qnc
2cmac (2.57)

Definitions of the aerodynamic properties can be found in A.1.

Replacing L and T in Equations (2.48-51) with Equations (2.56-7) gives the complete

static aeroelastic system of equations accounting for both the structural and aerodynamic

properties of the wing.

2.5 Solving the Static Aeroelastic System

Now that the governing static aeroelastic system of equations is complete, it can be seen from

dimensional analysis that h, θ, ψ̄2, and ψ̃2 are of different dimensions. Thus, for convenience,

the system was normalized. A.2 gives the system properties, as well as the quantities used

to normalize each.

After the system has been normalized, it can be reduced to two dependent variables:

θ and h. θ simply represents the twist about the elastic axis, which has been assumed to

correspond to the reference axis. h represents the vertical, or plunging, displacement of the

elastic axis. Both are now functions of η, which is the non-dimensionalized spanwise variable,

x2, and runs from 0 to 1. This final system can be written as5
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hIV −m4E1Qnh
′′′ +m3E1Qnθ

′′ −m13Qnθ +m14Qnh
′ = m15 (2.58)

θIV − 4m12 −m6E1Qn

m2E1 + 1
θ′′ −m16Qnθ +m17Qnh

′ − m7

m2E1 + 1
E1Qnh

′′′ = m18 +m19 (2.59)

With the resulting boundary conditions:

η = 0:

m1E1h
′′′ −m1m4E

2
1Qnh

′′ + h′ +m1m3E
2
1θ
′ = 0 (2.60)

m1E1(m2E1 + 1)θ′′′ + [(m2E1 − 1)2 +m1m6E
2
1Qn]θ′ −m1m7E

2
1Qnh

′′ = 0 (2.61)

h = θ = 0 (2.62)

η = 1:

h′′ +m3E1Qnθ −m4E1Qnh
′ = −m5E1 (2.63)

(m2E1 + 1)θ′′ +m6E1Qnθ −m7E1Qnh
′ = −(m8 +m9)E1 (2.64)

h′′′ −m4E1Qnh
′′ +m3E1Qnθ

′ = 0 (2.65)

(m2E1 + 1)θ′′′ − (4m12 −m6E1Qn)θ′ −m7E1Qnh
′′ = 0 (2.66)

Here, E1 is the non-dimensional transverse shear flexibility for a transversely isotropic

material, which is defined as the ratio between Young’s modulus and the modulus of trans-

verse shear rigidity. If Kirchoff’s hypothesis had been assumed, E1 would equal zero. The

m coefficients are functions of the structural and aerodynamic properties of the wing. A.3

gives expressions for the m coefficients. Qn is the normalized dynamic pressure. When

determining divergence speeds, Qn will become the eigenvalue of the governing equations.

When deriving the wing mode shapes, Qn will take on a value below the critical value of

divergence.
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Figure 2.2: Simplified geometric description of wing plunge, h, and twist, θ.

Having reduced the system to two dependent variables, h and θ, which vary along the

x2 axis, Fig. 2.1 can be simplified to Fig. 2.2. Notice that both h and θ are descriptions of

action in the x1, X3 plane, but they are functions of x2.

Due to the fact that mode shapes become irrelevant quantities after wing failure, the

first step in analysis is to determine at what dynamic pressure divergence occurs. The

first step in accomplishing this is to create a matrix inclusive of all wing properties. After

using MATHEMATICA’s DSolve function to solve the governing equations, an 8×8 matrix,

Equation (2.67), can be formed from the boundary conditions.
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[∆]{β} = {F} (2.67)

Where ∆ is the matrix describing the wing structural, geometric, and aerodynamic prop-

erties dependent on airflow, β is a vector made up of the 8 unknown boundary conditions,

and F are the wing properties independent of airspeed. Knowing that Qn, the normalized

dynamic pressure, is indicative of airspeed and density, it is left as a variable. This now

becomes a simple eigenvalue problem, and the divergence dynamic pressure can be obtained

by setting the determinant of the matrix equal to zero and solving for Qn.

In reality the speed of MATHEMATICA forces the use of a guess and check technique.

By creating a loop, which inputs various values of Qn before solving the governing equations,

the general trend can be used to find where the determinant equals zero.

In order to solve for the bending shapes, the basic technique of matrix inversion was used.

In such a large matrix there is the a good chance of this causing an ill-conditioned matrix.

To avoid that the process of iterative improvement was used.

{β} = [∆]−1{F} (2.68)

By using Equation (2.68), the unknown boundary conditions could be determined. Plug-

ging these back into the governing equations and choosing a dynamic pressure creates two

equations, H(η) and θ(η), which describe the pitching and plunging motion of the wing as

functions of the spanwise location. To generate truly useful data, these equations can be

combined into a single equation describing the effective angle of attack of the wing, αeff , as

follows.
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αeff = α0

(
1 +

θ − tan(Λ)
AR1

h′

α0

)
(2.69)

The MATHEMATICA code for both the divergence speed and effective angle of attack

calculations can be found in A.4 and A.5, respectively.

After determining values for both the divergence speed and effective angle of attack

distributions at different Mach numbers, an accurate assessment of the effects of transverse

shear deformation in steady flow can be made. The next step in the process is to look at

unsteady, oscillatory flow.

2.6 Unsteady Aerodynamics

While steady aerodynamics follows basic principles of physics and can be taught at the

undergraduate level, the topic of unsteady aerodynamics requires a good deal more effort.

Utilizing higher level math and complex functions, it is an area of study worthy of a dedicated

graduate level course. However, the unsteady data necessary in the context of this analysis

merely requires calculating values for lift and moment from known equations. Somewhat

complicating the process are the Mach number effects.

In order to determine accurate values for the aerodynamic forces, the unsteady equations

must be corrected for compressibility. An amazingly complex process to derive, the work

can be credited to two men Theodore Theodorsen(1,189) and P.F. Jordan(10,1). In the early

20th century, Theodorsen derived a complex function, C(k) = F (k) + iG(k), used in the
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prediction of unsteady incompressible aerodynamic forces, where k is the reduced frequency

of oscillation. This was a giant leap for aerodynamicists and mathematicians at the time.

Shortly after the Second World War, Jordan took the analysis of unsteady flow a step further

by correcting for the Mach number effects due to compressibility. Jordan’s work directly

corrects the Theodorsen function through:

Ccomp =
Fcomp

Fincomp

Cincomp (2.70)

where Fincomp is the real part of the Theodorsen function and

Fcomp =
(2l′α − l′z) + k

2
(2l′′α − l′′z )− πk

2

Clα[1 + (k
2
)2]

(2.71)

In Equation (2.71), the l variables are known as the Jordan coefficients and can be found

in Reference [10]. Once the Theodorsen function has been corrected for compressibility, it

can be used in the equations for unsteady aerodynamics.

Since flutter can be described by a neutrally unstable oscillation of a wing at a given

frequency, ω, lift and moment must also be represented as harmonic functions with the same

frequency. That is:

L(η; t) = Re(L̂(η)e(iωt)) (2.72)

M(η; t) = Re(M̂(η)e(iωt)) (2.73)

where L̂(η) and M̂(η) are complex amplitudes of the unsteady aerodynamic loads and are

related to the complex amplitudes of the oscillatory modes

h(η; t) = Re(ĥ(η)e(iωt)) (2.74)

θ(η; t) = Re(θ̂(η)e(iωt)) (2.75)

by the following relations:
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L̂ = πρc3ω2(ĥLhh + θ̂Lhθ + ĥLhh′ + θ̂Lhθ′) (2.76)

M̂ = πρc4ω2(ĥMθh + θ̂Mθθ + ĥMθh′ + θ̂Mθθ′) (2.77)

In Equations (2.76-7), the coefficients of the mode shapes are functions of aerodynamic

properties of the wing and the Theodorsen function. It is within these coefficients that the

correction for compressibility to the Theodorsen function is made. The equations can be

found in A.6.

2.7 Solving the Unsteady Aeroelastic System

The process for solving the unsteady aeroelastic system is much the same as that used for the

static state. Both are systems of two governing equations and eight boundary conditions.

However, a new problem arises in the unsteady system. Instead of just one eigenvalue

describing the static instability, there are two for the dynamic instability. Thus, instead

of dynamic pressure, the flutter problem is a function of Ω and k, the normalized circular

frequency and reduced frequency, respectively. They can be written as:

Ω =
ω

ωb

(2.78)

k =
ωc

2V
(2.79)

Aside from this point, the unsteady system is similar to that of the steady state. Sparing

another lengthy derivation, the unsteady model can be written as:

W1(s)H
(4)(η) +W2(s)Θ

(3)(η) = 0 (2.80)

W3(s)H
(3)(η) +W4(s)Θ

(4)(η) = 0 (2.81)
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with the boundary conditions at the root:

W5(s)H
(3)(0) +W6(s)Θ

(2)(0) = 0 (2.82)

W7(s)H
(2)(0) +W8(s)Θ

(3)(0) = 0 (2.83)

h(0) = 0 (2.84)

θ(0) = 0 (2.85)

and the boundary conditions at the tip:

W9(s)H
(3)(1) +W10(s)Θ

(2)(1) = 0 (2.86)

W11(s)H
(2)(1) +W12(s)Θ

(3)(1) = 0 (2.87)

W13(s)H
(2)(1) +W14(s)Θ

(1)(1) = 0 (2.88)

W15(s)H
(1)(1) +W16(s)Θ

(2)(1) = 0 (2.89)

Here the terms W (s) is used to describe the aerodynamic, geometric, and structural

properties of the wing, which are not shown explicitly. H and Θ are the Laplace transforms

of ĥ and θ̂, where the superscripts are used to show the order of each system.

Instead of using the DSolve command in MATHEMATICA, the system was solved using

the Laplace transform technique. This involved taking the Laplace transform of the two

governing equations, factoring out the H and Θ and solving two equations for two unknowns.

Once H and Θ were determined as functions of s, which represents the independent variable

in the Laplace domain, the inverse Laplace transform could be taken, giving ĥ and θ̂ as

functions of η. Now instead of an eighth order system of differential equations, there is

a system of two algebraic equations with eight higher order unknowns. This is where the

Laplace method shows its true utility.
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The Laplace Transform method takes into consideration a function’s initial conditions

when working with derivatives. As an example, the Laplace Transform of f ′ is sF − f(0).

This fact allows for the four initial conditions to be taken into account within the two

governing equations. Once this is done, the system has four unknowns. By this point in the

process the two governing equations have become quite large, and a switch from pen and

paper derivation to a computerized solved is needed. Again MATHEMATICA fills this role

quite nicely.

Using MATHEMATICA and wing tip boundary conditions, i.e. η = 1, a matrix can

be created by substituting in the governing equations evaluated at the tip. This leaves a

four by four matrix similar to the eight by eight matrix used in the steady state problem.

The benefit of using the Laplace technique can be seen when manipulating this matrix, as

inverting it has a significantly lower chance of causing an ill-conditioned matrix.

This for by four matrix now has six unknowns: the airflow properties k and Ω, as well

as four initial conditions h′(0), h′′(0), θ′(0), and θ′′(0). Depending on what type of data is

known, this system can be used to either determined flutter speed and frequency or the wing

mode shapes.

In order to determine flutter speed and frequency, the Theodorsen method is used. This

method is similar to the eigenvalue problem used to solve for divergence speed, but takes

two variables into account, k and Ω. At first it would seem that one matrix with two

variables could not be solved. However since the matrix is time dependent, its terms have

become complex. This means that for the determinant to approach zero, both the real and

imaginary parts of each term must vanish. Theodorsen proposed that this could be done by

selecting two values of reduced frequency, both close to the assumed value that would cause
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the determinant to equal zero. Then the normalized frequency is varied until two values

are determined. One where the real part of the determinant equals zero, and one where the

imaginary part equals zero. This process is repeated for the other value of k. The flutter

eigenvalues at which the flutter determinant becomes zero can then be determined from the

intersection. This can better be explained by Fig. 2.3.

Figure 2.3: Theodorsen’s method for determining the flutter eigenvalues k and Ω.

In this example, k = 0.4 and Ω = 3 would cause the flutter determinant to vanish. At

this point, Equations (2.74-5) can be used to solve for the flutter speed, V , and the flutter

frequency, ω.

Having now determined the flutter stability boundary corresponding to the maximum

speed and oscillatory frequency the wing can sustain, subcritical mode shapes can be deter-

mined. Utilizing the same method as outlined in Section 2.5, the matrix can be inverted.

Again the process of iterative improvement reduces the chance of creating an ill-conditioned

matrix during the inversion process.
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2.8 The Physical Meaning of E/G’

Throughout this derivation the term E/G’ has been included as a structural property without

much explanation. However, it has never been assigned real-world values. Often when

performing research it is easy to focus on the specifics and forget why the research is actually

being done. This situation can be avoided if real-life results are always an end goal of the

research.

In the case of E/G’, the analysis looks at values from 0-100. To better understand how

these numbers correlate to some real world composits, Table 5.1 gives different materials

along with their E/G’ values. Some materials such as fiberglass and graphite are household

names. Some are not. However, all of these materials are used throughout industry.

Material E/G’
Fiberglass 7

Boron 23
Graphite 31

Table 2.1: E/G’ Values.
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Results and Discussion

Having laid out the mathematics behind the project, the focus can now be shifted to results.

The models developed in Chapter 2 are extremely generic models, which can be used to

analyze a large variety of wings. As long as a wing fits into a fairly general category,

its specific properties can be input into the model and results for critical eigenvalues and

subcritical mode shapes can be determined. For this analysis the wings described in above

will be used to analyze the effects of transverse shear rigidity on the static and dynamic

aeroelastic instabilities in the presence of compressibility effects.

3.1 Wing Models

Once a generic model was developed, it became necessary to gather information on wings

of known geometric, aerodynamic, and structural properties. This is necessary in order to

have specific wings to analyze.

35
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Wing Goland’s 400R

Span (ft) 40.0 2.90
Chord (ft) 6.0 0.79

AR 6.67 3.69
Thickness 0.1 0.04

Table 3.1: Goland’s Wing and the 400R Wing.

The two wings chosen were Goland’s wing11 and the 400R12 wing. Specific properties of

both can be found in Table 3.1. Obviously, the 400R wing is much smaller and was most

likely designed for wind tunnel testing. Looking at the non-dimensional properties of aspect

ratio and thickness, it can be seen that the 400R wing is much shorter and thinner than

Goland’s wing. In terms of this analysis, as a structure become thicker it tends to be more

affected by transverse shear deformation.

Unfortunately neither of these wings has a very low transverse shear moduli causing

E/G′ ≈ 0. Thus both are considered to be made of classical materials. This problem

is overcome by simply varying the value of E/G′. As long as the basic geometric and

aerodynamic properties of the wings are held constant, varying only a few properties allows

for a parametric analysis to be performed on the aeroelastic instability of the wing.

3.2 Test Equipment

3.2.1 MATHEMATICA9

All computer work was done using the Silicon Graphics system in the USNA CADIG center.

A UNIX based version of MATHEMATICA was run. Input could be made via a TELNET

connection from outside of the facility. However, direct input into one of the CADIG servers

was more efficient.
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Although a powerful computational tool and the choice of many mathematicians for

symbolic manipulation, MATHEMATICA was shown to have some flaws. The main problem

encountered was the black box design of the program. Even though MATHEMATICA has

literally thousands of functions available for symbolic manipulation and numeric analysis,

very few allow the user insight into how the functions actually work. While this is acceptable

for basic math functions, processes such as matrix inversion and the numerical solver may

or may not be operating as the user desires.

3.3 Steady Flow Analysis

3.3.1 Effect of Mach Number on Divergence Speed

Before any meaningful analysis can be performed on the what shape a wing will take at a give

air speed, it is necessary to determine at what speed the wing will fail. This is accomplished

by the method laid out in Section 2.5 with the Goland wing properties. For this analysis

the wing will be swept forward 20 deg. By varying Mach number and the transverse shear

rigidity, a set of data points was created, which showed the effects of both on the divergence

speed. Fig. 3.1 shows these results.

Divergence spped is measured as the nondimensional value, Qn, which is a function of

airspeed and air density. Notice the decrease in divergence speed as Mach number increases.

This is representative of the higher amount of kinetic energy carried in high speed flow. It is

important to remember that Mach number can be used to measure how compressed the air

has become. When the freestream air is compressed by the wing at higher Mach numbers, it

will transfer a greater amount of energy into the structure. The wing on the other hand can

only absorb a constant amount of this in the form of strain energy. Thus, for higher Mach

number divergence occurs at a lower value of Qn.
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Figure 3.1: Critical dynamic pressure vs. Mach number for various values of transverse shear
rigidity.

One may wonder what significance Fig. 3.1 has knowing that both dynamic pressure and

Mach number are related to airspeed. To add atmospheric relevance, the two lines drawn

in gray represent the range of values possible in the Earth’s atmosphere. The upper line

represents sea level conditions on a standard day. The lower line represents 50,000 feet on a

standard day. This shows that at sea level higher dynamic pressures can be absorbed by the

wing, while at 50,000 feet higher Mach numbers can be attained before divergence occurs.

These results represent another benefit gained by high performance aircraft at high altitudes.
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3.3.2 Effects of Compressibility on Effective Angle of Attack

Having determined the divergence speeds for the Goland wing at various atmospheric con-

ditions and Mach numbers, analysis of the wing deformation can begin. Again using the

Goland wing, the effective angle of attack along the wing semi-span was determined at var-

ious airspeeds relating approximately to Mach 0.3, 0.7, and 0.8 at sea level. These results

are shown in Fig. 3.2.

Figure 3.2: Spanwise distribution of effective angle of attack across wing semi-span.

The first point to be made concerns the effects of compressibility at low airspeeds. Fig.

3.2a shows that at 200 knots, the limit of incompressible flow theory, the compressible

analysis actually shows a smaller effective angle of attack distribution across the wing. Even

though the difference is almost negligible, a fraction of a degree at the tip, this adds a factor

of safety to the design of low speed aircraft whose designers use incompressible flow theory.
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For instance, a general aviation aircraft intended for 200 knots, approximately Mach 0.3 at

sea level, was most likely designed using incompressible flow theory. When the compressible

analysis is performed in this performance region, it shows that there is actually less deforma-

tion than previously calculated. As general aviation aircraft companies, such as Cessna and

Diamond, move to more and more composite aircraft components, this information could

become very useful.

Another interesting occurrence is the divergence speed. Fig. 3.1 showed that for the

Goland wing divergence should occur between Mach 0.7 and 0.8. Fig. 3.2 shows this hap-

pening. While the jump between an airspeed of 200, Fig. 3.2a, and 460 knots, Fig. 3.2b,

only caused an 8 degree change in the effective angle of attack at the wing tip, the jump

between 460 and 530 knots, Fig. 3.2c, caused a larger jump in both the compressible and

incompressible analysis. This reinforces the fact that for the Goland wing, divergence speed

does occur in this range.

Forward swept wings tend to have a lower divergence speed than straight or swept back

wings. Forward swept wings also show more deformation than straight or swept back wings

at the same airspeed. This fact was a major problem when designing the X-29 Forward

Swept Wing aircraft. To alleviate this problem, composite tailoring was used. In contrast,

swept back wings experience divergence at much higher speeds than swept forward wings,

therefore lessening wing deformation. Fig. 3.3 shows the effective angle of attack across the

wing semi-span for Goland’s wing swept back 20 deg. Results are shown for airspeeds of 460

and 530 knots, relating to Mach 0.7 and 0.8 at sea level.
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Figure 3.3: Effective angle of attack across semi-span for Goland’s wing swept back 20deg.

Using Fig. 3.3 it is easier to point out how little changes in airspeed affect wing defor-

mation. While there is a 20 deg to 30 deg jump between 460 and 530 knots for the forward

swept wing, there is only a 0.5 deg jump for the swept back wing.

3.3.3 Effect of Sweep on Effective Angle of Attack

Although it is quite simple to state that forward swept wings are deformed more than swept

back wings at similar air speeds, further investigation into the effects of sweep produce

interesting results. Before these results can be discussed it is necessary to explain the level

of influence sweep has on the aerodynamic and geometric properties of a wing.
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When air flows across a wing, only the normal component of the airspeed to the leading

edge of the wing creates aerodynamic forces and moments. Thus, if an aircraft with wings

swept at an angle Λ, is flying at an airspeed V , then the effective airspeed is actually only

V cos(Λ). This relationship can be directly applied to Mach number. In truth if an aircraft

is flying at Mach 1 with its wings swept back 20 deg, its wing cross-section is only seeing

Mach 0.94. Sweep angle also has an effect on the three dimensional lift-curve slope of a

wing, a0. As the magnitude of sweep increases, a0 also increases by 1/ cos(Λ). This effect

acts opposite to the loss of lift caused by sweep’s reduction of effective airspeed.

Geometrically, sweep alters the effective angle of attack as shown in Equation (2.56).

αeff is a coupling of the bending and torsional deformations, otherwise known as plunging

and pitching modes. Sweep angle is necessary to relate these two. However, instead of

using the cosine of sweep, this coupling relies on the tangent of sweep. Knowing that the

tangent function diverges at 90deg and -90deg, special attention must be paid to its effect on

the results. Obviously as sweep approaches these values, the two-dimensional aerodynamic

theory used in the model will no longer work.

With all these sweep effects working with and against each other, as both cosine and

tangent functions, it is hard to predict exactly what overal effect sweep will have. Fortunately,

computers can perform these complicated calculations in seconds and output the results.

From that Fig. 3.4 shows the effects of sweep on effective angle of attack. Positive values of

Λ indicate a swept back wing and negative values indicate a forward swept wing.
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Figure 3.4: Effect of sweep on effective angle of attack at 550 knots.

At first glance, the results for the swept back appear reversed. Not only is the magnitude

smaller, but the wing actually has a lower angle of attack at the tip than the root. This

is due to tan(Λ) being positive for a swept back wing. Even though the twist pulls the

wing tip up, the coupled effect of the wing plunging mode causes an overall decrease in the

effective angle of attack. For a swept back wing these two offset one another, but in swept

forward wings they both work together. This likely explains the fact that forward swept

wings diverge at lower air speeds.
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The truly interesting results come from the different values of forward sweep. Start-

ing from 10 deg, increasing forward sweep causes an increase in effective angle of attack.

However, this trend reverses somewhere between Λ = 30deg and Λ = 50deg. By the time

Λ = 60deg the deformation is back below Λ = 20deg. This occurrence is most likely due to

the switch between a cosine dominant function and a tangent dominated function. At -30

deg cosine is 0.87 and tangent is -0.58, by -50 deg cosine is 0.64 while tangent is 1.19.

This switch between dominant terms in Equation (2.56) signifies two points. The first

is that at a certain sweep angle, geometric properties become more important than purely

aerodynamic principles. The second, which is less encouraging, is that at a certain point, the

equations may become unrealistic. To validate results at this transition point experimental

data would have to be collected. If indeed this data did not show this region of transition,

then a line would have to be drawn showing where the theory no longer held true.

3.3.4 Effects of Transverse Shear Deformation on Effective Angle
of Attack

Having analyzed the effects of compressibility and sweep on the steady state aeroelastic

properties on Goland’s wing, an accurate discussion of the effects of transverse shear can

now be made. It was already shown in Section 5.1.1 that as E/G’ increased, divergence speed

decreased. This made sense as more flexibility through the wing’s thickness would accelerate

wing instability. Now comparing the effect of transverse shear deformation on effective angle

of attack, more in depth conclusions can be made. Fig. 3.5 shows the spanwise effective angle

of attack distribution for various values of E/G’ for both incompressible and compressible

flows.
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Figure 3.5: Effect of transverse shear on effective angle of attack at 200 knots.

Again similar to the results drawn from the analysis of divergence speeds, it can be seen

from the analysis of Fig. 3.5 that the more flexible the wing in transverse shear, the more it

will deform at a certain air speed. This can directly be related to a lower divergence speed

for flexible wings.

Also from Fig. 3.5a it can be seen that at 200 knots, incompressible analysis is fairly

similar for all values of E/G’. There is less than a 1 % difference in the effective angle of

attack at the wing tip. However, the compressible analysis shows that a much larger gap

in bending occurs between the different values of E/G’. An exact physical explanation for

this is difficult to draw. One explanation may be that as the wing bends, compressible flow

has a high tendency to increase the aerodynamic loads and moments it places on the wing.

Thus, a change in wing flexibility would have a greater effect in compressible flow, than in

incompressible flow. It is important to remember that these results and hypothesis are for

low speed flows. Because as Fig. 3.6 points out, varying three properties makes an analysis

of results very difficult.
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Figure 3.6: Effect of transverse shear on effective angle of attack at 460 knots.

Fig. 3.6 shows that even at high airspeeds incompressible theory causes a larger deforma-

tion than compressible theory. However, the gap is definitely closing. At values of E/G′ = 0

there is hardly any difference between the compressible and incompressible analysis. It is

quite possible that at higher airspeeds and thus, higher Mach numbers, the magnitude of the

compressible aerodynamic loads begins to catch up with that of the incompressible loads.

To further back up this argument, the large deformation gap that was seen in the com-

pressible analysis at 200 knots has been significantly reduced. Fig. 3.6 actually shows

that the incompressible theory now has a larger gap between the wing tip deformations of

E/G′ = 0 and E/G′ = 100. To explain this phenomenon better, deeper research into com-

pressible subsonic aerodynamics would be necessary. As these results seem to go against

intuition, it appears that this is simply a case of finding answers, which lead to more ques-

tions.
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3.4 Flutter Analysis

3.4.1 The Influence of Transverse Shear Deformation on Flutter
Frequency

Transitioning now to the unsteady side of the field, the focus switches from divergence

speeds and effective angles of attack to flutter frequencies and velocities. It is important to

remember throughout this analysis that wing failures can occur through both static aeroe-

lastic instability, divergence, and dynamic instability, flutter. In different configurations and

environments, either type of failure could occur first. Thus, determining the conditions nec-

essary for both categories to occur is vital in understanding what flow regimes an aircraft

can operate in.

Moving on, Theodorsen’s method was utilized to investigate the effects of transverse shear

rigidity and Mach number on the flutter eigenvalues. Unlike the static instability described

by a single eigenvalue, the flutter instability is described by two eigenvalues. Both of these

eigenvalues were normalized during this analysis in order to more eliminate the necessity of

carrying units. As flutter frequency, rate of wing oscillation at failure, is seemingly more

difficult to understand it will be dealt with first. Fig. 3.7 shows the effects of transverse

shear rigidity.
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Figure 3.7: Effect of transverse shear flexibility on flutter frequency.

From this it can be seen that as the wing becomes more flexible, its flutter frequency

decreases at all Mach numbers. However, as the Mach number increases up into the high

speed subsonic and supersonic regions the curves become more linear. This follows the

hypothesis from steady flow that transverse shear rigidity has a larger impact upon wings in

low speed subsonic flow. It is also clear that as the wing becomes more flexible in transverse

shear flutter occurs at lower frequencies. This phenomenon is consistant with the inability

of the wing structure to dissipate the energy absobed due to the aerodynamic loads.
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Figure 3.8: Effect of Mach number on flutter frequency.

To better illustrate this idea, Fig. 3.8 displays flutter frequency against Mach number

for three values of E/G’. If Fig. 3.7 left any doubt that transverse shear deformation is a

problem at low airspeeds, Fig. 3.8 will erase it.

The results show the importance of Mach number on flutter frequency. Notice the large

difference between flutter frequencies at Mach 0. The wing with E/G′ = 10 has a flutter

frequency approximately 20% larger than the E/G′ = 100 wing. As the Mach number

increases, this difference decreases. At Mach 1 this difference has fallen to only 12%, and

at Mach 2 it is well under 10%. Again, the effects of transverse shear deformation on the

flutter frequency are greater at the lower Mach numbers.
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Fig. 3.8 also draws an excellent picture of what is commonly known as ”transonic dip”.

Notice the sudden decrease in the flutter frequency as the Mach number crosses from 0.95

to 1.2. Past Mach 1.2 the curve again levels out. This occurrence is common in transonic

aerodynamic and gives shows theoretically just how dynamic the transonic regime can be.

3.4.2 The Influence of Transverse Shear Deformation on Flutter
Speed

Flutter speed, the velocity at which dynamic instability occurs, can be dealt with much like

flutter frequency. Exhibiting many of the same tendencies when transverse shear rigidity

and Mach number are altered, the flutter speed is much simpler to physically comprehend.

Basically above a certain airspeed, an oscillating wing will no longer be able to dissipate the

aerodynamic energy absorbed by the wing structure. When the structure absorbs energy at a

rate higher than it can dissipate that energy, wing oscillations will increase in amplitude until

structural failure occurs. The flutter speed is the neutrally stable speed, which separates

damped oscillations from undamped oscillations.

In the test flights of many aircraft certain ”danger zones” are encountered when the

flutter speed is reached. However, often higher air speeds can be attained simply by changing

altitude and circumventing the danger zone. If a change in altitude can be used to avoid

certain flutter speeds it is not unlikely that Mach effects have something to do with flutter

speeds. Fig. 3.9 shows the effects of tranverse shear flexibility on flutter speed for various

Mach numbers.
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Figure 3.9: Effect of transverse shear on flutter speed.

Similar to its effect on flutter frequency, an increase in transverse shear tends to lower

the flutter speed. It is interesting to note, that as E/G’ becomes large, the Mach lines seem

to converge upon one another. All subsonic lines seem to curve up towards an imaginary

tangential line, while the supersonic line curves down towards the same line. It turns out that

this line seems to be exactly where the Mach 1 results would be depicted. Unfortunately,

aerodynamic data for Mach 1 is extremely unstable and thus this point cannot be definitively

proven. However, drawing a straight line from where Mach 1 should cross the dependent axis

to the convergence of the other four curves, it does not seem unreasonable that the curves

could be converging to Mach 1.

In gas dynamics both subsonic and supersonic flows tend to approach Mach 1 at the

throat of nozzles. Could it be that flutter speed exhibits the same properties? It looks as

if both the subsonic and supersonic curves are converging towards the imaginary Mach 1

line as E/G’ increases. Further investigation of this behavior could produce very interesting

results.
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Getting back to the effects of Mach number on flutter speed, Fig. 3.10 shows once again

the inverse effect of Mach number on aeroelastic properties. As the Mach number increases,

the difference between flutter speeds for various values of E/G’ decreases. Similar to Fig. 3.1,

the grey atmospheric boundary lines have been placed on the plot. The left line represents

sea level conditions, while the right line represents 50,000 ft. Notice that for flutter speed,

the atmospheric range is much smaller than for divergence speed.

Figure 3.10: Effect of Mach number on flutter speed.

As mentioned before, the three curves converge as Mach number is increased up to a

point. Fig. 3.10 actually shows a slight divergence between the curves past Mach 1.2. This

could be due to the E/G′ = 10 curve showing somewhat erratic behavior, or possibly a new

phenomenon not yet seen.
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The inclusion of the atmospheric boundary lines shows where possible inaccuracies could

have occurred in a merely incompressible analysis. By the time the flutter speed curves reach

the first boundary line, sea level, they have already decreased almost 10%. Similar to the

trend shown in the divergence speed analysis, the flutter speed decreases as Mach number

increases. This could be due to the increased energy in the compressed flow.

3.4.3 Comparison Between Goland’s Wing and the 400R Wing

Having looked at what effects both Mach number and transverse shear flexibility have on

the aeroelastic properties of Goland’s wing, the next step is to look into the effects that wing

geometry has on the flutter eigenvalues. As shown in Table 3.1, the 400R wing is a thinner

wing than Goland’s wing. It also has a lower aspect ratio. Fig. 3.11 shows the comparison

between the flutter frequencies for both Goland’s wing and the 400R wing.

Notice that as the tranverse shear flexibility is increased, the flutter frequency of Goland’s

wing is more affected. Stepping back a moment to think about this, the answer to why

this occurs becomes apparent. Transverse shear is a measure of the deformation occurring

through the thickness of the wing. If one wing is thicker than another, such as is the case

with Goland’s wing and the 400R, it would make sense that the thicker wing is more affected

by a change in transverse shear flexibility.
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Figure 3.11: Comparison of flutter frequencies for Goland’s wing and the 400R.

The effects of wing thickness on flutter speed produce much the same results. Fig. 3.12

shows the flutter speed comparison.

Again an increase in the value for E/G’ produces a noticeable change in the flutter

speed for Goland’s wing. However, almost no change occurs to the characteristics of the

400R. Again this should concern general aviation enthusiasts more than high performance

designers. Most low speed aircraft utilize a thick wing to generate lift at low airspeeds. High

performance jets can create most of their lift through airspeed and require small thickness

and camber in their wings. Again it turns out that transverse shear deformation affects

general aviation aircraft more than their high performance counterparts.
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Figure 3.12: Comparison of flutter speeds for Goland’s wing and the 400R.

3.5 Summary and Conclusions

Initially, this research was focused on analyzing the aeroelastic effects of compressibility and

transverse shear deformation with the thought that the findings could be used to design high-

performance aircraft. However, as the results have shown it is quite obvious that transverse

shear is a larger problem at low air speeds. Every analysis from the effect of transverse shear

flexibility to wing thickness showed that the wing properties common in general aviation

aircraft led to larger variations in aerodynamic performance.
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This is not to say that high performance aircraft should have no concern of aeroelastic

failure. It was shown that as Mach number increases all critical speeds decrease, which works

against the jet community. Nevertheless, as all aviation communities from ”fighter jocks” to

civilian student pilots continue the search for lighter, faster, and more dependable aircraft,

composite structures will no doubt be used in place of their metallic ancestors.

It is important to remember that although theoretical analysis has its flaws, it is useful as

a low-cost method of determining trends in data. Specific trends discerned from this analysis

are:

a. At low air speeds, and thus low Mach numbers, variations in transverse shear flexibility

had more of an effect on a wing’s aeroelastic instabilities than at high speeds.

b. As Mach number increases, the critical air speeds in both steady and unsteady flow

decrease.

c. Compressible analysis varies from incompressible analysis by anywhere from 0-30% in

standard atmospheric conditions.
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Appendix A

Table A.1: Definitions of aerodynamic characteristics.

qn = 1
2
ρ∞V

2
∞cos

2Λ
a = lift curve slope

a0 = incompressible lift curve slope

a0 = 2π
1+ 4

AR
codΛ

dCl

dα
= compressible lift curve slope

dCl

dα
= a0cosΛ√

1−M2
0 cos2Λ+

(
a0cosΛ

πAR
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πAR
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Table A.2: Non-dimensionalized values.

η = x2

l

d
dx2

= 1
l

d
dη

d2

dx2
2

= 1
l2

d2

dη2

h = h
c

ē = e
c

t̄ = t
c

θ̄ = θ

x̄0 = x0

c

E1 = E
G′

AR1 = AR
2

Qn = 12qn
AR3

1(1−ν2)

Et̄3
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Table A.3: Determination of ‘m’ coefficients.

m1 = t̄2

12(1−ν2)AR2
1

m2 = t̄2

2(1+ν)
m12 = m2

m1

m3 = m1a0AR1 m13 = m3

m1

m4 = m1a0tanΛ m14 = m4

m1

m5 = m1a0α0AR1Qn m15 = m5

m1

m6 = t̄2

(1−ν2)AR1
ēa0 m16 = m6

m1

m7 = m6
tanΛ
AR1

m17 = m7

m1

m8 = m6α0Qn m18 = m8

m1

m9 = t̄2

(1−ν2)AR1
cmacQn m19 = m9

m1
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Table A.4: MATHEMATICA code for Divergence Speed.
Qnlist = {}; % Define nullset matrix

Do[ % Begin loop to cycle through values of Q n
pois = .25; % Set Poison’s ratio
E1 = 70; % Set E/G’

Clear[h];
Clear[theta];
Clear[equations]; % Clear all variables
Clear[A];
Clear[sol];

sweep = -.3509; % Sweep
a0 = 6.28/(1 + 4/8 Cos[sweep]); % Incompressible lift curve slope
AR = 8; % Aspect ratio
AR1 = AR/2; % Semi-span aspect ratio

alpha0 = 0.0873; % Angle of attack
alphabar = alpha0; % Angle of attack (1st normalization)
alphadbar = alpha0; % Angle of attack (2nd normalization)

ebar = .1; % Elastic offset
tbar = .1; % Wing thickness

cmac = 0; % Moment coefficient

m1 = (tbar)2/(12 (1 - (pois)2) (AR1)2);
m2 = (tbar)2/(2 (1 + pois));
m3 = m1 a0 AR1;
m4 = m1 a0 Tan[sweep];
m5 = m1 a0 alphabar AR1 Qn; % Define coefficients from governing equations
m6 = ((tbar)2/(AR1 (1 - (pois)2)))*ebar a0;
m7 = m6 Tan[sweep]/AR1;
m8 = m6 alphadbar Qn;
m9 = ((tbar)2/((1 - (pois)2) AR1))*cmac Qn;
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m12 = m2/m1;
m13 = m3/m1;
m14 = m4/m1;
m15 = m5/m1; % Define coefficients from governing equations
m16 = m6/m1;
m17 = m7/m1;
m18 = m8/m1;
m19 = m9/m1;

a1 = -m4 E1 Qn;
a2 = m3 E1 Qn;
a3 = -m13 Qn; % Define coefficients from governing equations
a4 = m14 Qn;
b1 = m15;

a5 = -(4 m12 - m6 E1 Qn)/(m2 E1 + 1);
a6 = -m16 Qn;
a7 = m17 Qn; % Define coefficients from governing equations
a8 = -(m7/(m2 E1 + 1)) E1 Qn;
b2 = m18 + m19;

c1 = m1 E1;
c2 = -m1 m4 E12 Qn;
c3 = 1;
c4 = m1 m3 E12 Qn; % Define coefficients from governing equations
c5 = m1 E1 (m2 E1 + 1);
c6 = ((m2 E1 + 1)2 + m1 m6 E12 Qn);
c7 = -m1 m7 E12 Qn;

d1 = m3 E1 Qn;
d2 = -m4 E1 Qn;
b3 = -m5 E1;
d3 = (m2 E1 + 1);;
d4 = m6 E1 Qn;
d5 = -m7 E1 Qn; % Define coefficients from governing equations
b4 = -(m8 + m9) E1;
d6 = -m4 E1 Qn;
d7 = m3 E1 Qn;
d8 = (m2 E1 + 1);
d9 = -(4 m12 - m6 E1 Qn);
d10 = -m7 E1 Qn;
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sol = DSolve[
{ h””[y] + a1 h”’[y] + a2 theta”[y]
+ a3 theta[y] + a4 h’[y] == b1,
theta””[y] + a5 theta”[y] % Solve governing equations
+ a6 theta[y] + a7 h’[y] + a8 h”’[y] ==
b2}, {h[y], theta[y]}, y];

h[y ] = First[h[y] /. sol];
theta[y ] = First[theta[y] /. sol];
equations = {h[0] == 0,
theta[0] == 0,
c1 h”’[0] + c2 h”[0]
+ c3 h’[0] + c4 theta’[0] == 0,
c5 theta”’[0] + c6 theta’[0]
+ c7 h”[0] == 0, % Input boundary conditions
h”[1] + d1 theta[1] + d2 h’[1] == b3,
d3 theta”[1] + d4 theta[1] ,
+ d5 h’[1] == b4
h”’[1] + d6 h”[1] + d7 theta’[1] == 0,
d8 theta”’[1] + d9 theta’[1]
+ d10 h”[1] == 0} ;

equations = Simplify[equations]; % Simplify system
A = Table[Coefficient[equations[[i, 1]], % Create matrix of coefficients
C[j]], {i, 1, 8}, {j, 1, 8}];

detA = Det[A]; % Calculate determinant
Print[detA]; % Output determinant
Qnlist = Append[Qnlist, detA], % Create list of determinants
{Qn, X, Y, Z}] % Run loop from X to Y by Z
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Table A.5: MATHEMATICA code for Effective AOA.
Clear[h];
Clear[theta];
Clear[equations];
Clear[coeffs];
Clear[sol]; % Clear all variables
Clear[Theta];
Clear[H];
Clear[aeff];

Youngs = Input[”Young’s Modulus = ”]; % Input Young’s modulus
G = Input[”Modulus of Rigidity = ”]; % Input shear modulus
pois = Input[”Poisson’s Ratio = ”]; % Input Poison’s ratio
E1 = Youngs/G; % Calculate E/G’
comp = Input[”1) Compressible % Choose flow regime
Analysis, 2) Incompressible Analysis”];

alphain = Input[”Angle of % Input AOA in deg
Attack(deg) = ”];
alpha0 = alphain * 3.14159/180; % Degree to radians
alphabar = alpha0; % Angle of attack (1st normalization)
alphadbar = alpha0; % Angle of attack (2nd normalization)

c = Input[”Chord (ft) = ”]; % Input chord
b = Input[”Wing Span (ft) = ”]; % Input wingspan
l = b/2; % Calculate semispan
e = Input[”Elastic Offset(ft) = ”]; % Input elastic offset
ebar = e/c; % Calculate elasic offset
t = Input[”Wing Thickness(ft) = ”]; % Input wing thickness
tbar = t/c; % Calculate wing thickness

Sweep = Input[”Wing % Input sweep
Sweepback(deg) = ”];
sweep = Sweep * 3.14159/180; % Degree to radians
AR = b/c; % Calculate aspect ratio
AR1 = AR/2; % Calculate semi-aspect ratio
V = Input[”Airspeed(ft/s) = ”]; % Input velocity
roe = Input[”Density(slugs/ft3) = ”]; % Input density
T = Input[”Temperature(deg F) = ”]; % Input temp
sound = (1.4*1716*(T + 460)).5; % Calculate speed of sound
M = V/sound; % Calculate Mach number
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qn = .5 * roe * V2 * Cos[sweep]2; % Calculate dynamic pressure
Qn = qn * 12 * (1 - pois2) * % Normalize dynamic pressure
AR1/(Youngs * tbar3);

aincomp = 6.28/(1 + (4/AR) Cos[sweep]); % Incompressible lift curve slope
acomp = (aincomp*Cos[sweep])/((1 -
M2*Cos[sweep]2 + (aincomp*Cos[sweep]/ % Compressible lift curve slope
(3.14159*AR))2).5 +
aincomp*Cos[sweep]/(3.14159*AR));

cmac = 0; % Moment coefficient

If[comp == 2, a0 = aincomp, a0 = acomp]; % Choose flow regime

m1 = (tbar)2/(12 (1 - (pois)2) (AR1)2);
m2 = (tbar)2/(2 (1 + pois));
m3 = m1 a0 AR1;
m4 = m1 a0 Tan[sweep];
m5 = m1 a0 alphabar AR1 Qn; % Define coefficients from governing equations
m6 = ((tbar)2/(AR1 (1 - (pois)2)))*ebar a0;
m7 = m6 Tan[sweep]/AR1;
m8 = m6 alphadbar Qn;
m9 = ((tbar)2/((1 - (pois)2) AR1))*cmac Qn;

m12 = m2/m1;
m13 = m3/m1;
m14 = m4/m1;
m15 = m5/m1; % Define coefficients from governing equations
m16 = m6/m1;
m17 = m7/m1;
m18 = m8/m1;
m19 = m9/m1;

a1 = -m4 E1 Qn;
a2 = m3 E1 Qn;
a3 = -m13 Qn; % Define coefficients from governing equations
a4 = m14 Qn;
b1 = m15;



APPENDIX A. 66

a5 = -(4 m12 - m6 E1 Qn)/(m2 E1 + 1);
a6 = -m16 Qn;
a7 = m17 Qn; % Define coefficients from governing equations
a8 = -(m7/(m2 E1 + 1)) E1 Qn;
b2 = m18 + m19;

c1 = m1 E1;
c2 = -m1 m4 E12 Qn;
c3 = 1;
c4 = m1 m3 E12 Qn; % Define coefficients from governing equations
c5 = m1 E1 (m2 E1 + 1);
c6 = ((m2 E1 + 1)2 + m1 m6 E12 Qn);
c7 = -m1 m7 E12 Qn;

d1 = m3 E1 Qn;
d2 = -m4 E1 Qn;
b3 = -m5 E1;
d3 = (m2 E1 + 1);;
d4 = m6 E1 Qn;
d5 = -m7 E1 Qn; % Solve governing equations
b4 = -(m8 + m9) E1;
d6 = -m4 E1 Qn;
d7 = m3 E1 Qn;
d8 = (m2 E1 + 1);
d9 = -(4 m12 - m6 E1 Qn);
d10 = -m7 E1 Qn;

sol = DSolve[
{ h””[y] + a1 h”’[y] + a2 theta”[y]
+ a3 theta[y] + a4 h’[y] == b1,
theta””[y] + a5 theta”[y] % Solve governing equations
+ a6 theta[y] + a7 h’[y] + a8 h”’[y] ==
b2}, {h[y], theta[y]}, y];



APPENDIX A. 67

h[y ] = First[h[y] /. sol];
theta[y ] = First[theta[y] /. sol];
equations = {h[0] == 0,
theta[0] == 0,
c1 h”’[0] + c2 h”[0]
+ c3 h’[0] + c4 theta’[0] == 0,
c5 theta”’[0] + c6 theta’[0]
+ c7 h”[0] == 0, % Input boundary conditions
h”[1] + d1 theta[1] + d2 h’[1] == b3,
d3 theta”[1] + d4 theta[1] ,
+ d5 h’[1] == b4
h”’[1] + d6 h”[1] + d7 theta’[1] == 0,
d8 theta”’[1] + d9 theta’[1]
+ d10 h”[1] == 0} ;

coeffs = Solve[equations, {C[1], C[2], C[3], % Solve for unknowns
C[4], C[5], C[6], C[7], C[8]}];
Theta[y ] = Chop[ComplexExpand[Simplify % Solve for twist
[First[theta[y] /. coeffs]]]];
H[y ] = Chop[ComplexExpand[Simplify % Solve for bending
[First[h[y] /. coeffs]]]];
aeff[y ] = 1 + (Theta[y] -
(Tan[sweep]/AR1) D[H[y], {y, 1}])/alpha0; % Solve for effective AOA

plotA = Table[{l*y, Re[H[y]*c]}, % Eliminate imaginary term
{y, 0, 1, .01}];
plotB = Table[{l*y, Re[Theta[y]]}, % Eliminate imaginary term
{y, 0, 1, .01}];
plotC = Table[{l*y, Re[aeff[y]]*alphain}, % Eliminate imaginary term
{y, 0, 1, .01}];

ListPlot[plotA, PlotJoined -¿ True, % Plot bending
AxesLabel -¿ {”Non-Dimensional Semispan”,
”Vertical Displacement (ft)”}];
ListPlot[plotB, PlotJoined -¿ True, % Plot twist
AxesLabel -¿ {”Non-Dimensional Semispan”,
”Twist (deg)”}];
ListPlot[plotC, PlotJoined -¿ True, % Plot effective AOA
AxesLabel -¿ {”Non-Dimensional Semispan”,
”Effective Angle of Attack (deg)”}];
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Table A.6: Unsteady aerodynamic coefficients.
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